Introduction

In herbivores’ natural diets, the main abrasive factors contributing to tooth wear are phytoliths (plant silicates) and grit (Fortelius and Solounias, 2000). However, the different aspects in which they impact tooth wear and the timeframe a wear signature takes to develop, still remain unexplored. The effect of intrinsic (phytoliths) and extrinsic (grit) abrasives was investigated in goat teeth during a controlled feeding experiment over a 6 month period, where four groups were fed diets of increasing abrasiveness.

Objectives

- What are the different evolutionary pressures created by phytoliths and grit on tooth height?
- How long does dietary signal take to develop at the macroscopic level?
- How do tooth crown and roots react independently to a highly abrasive diet?

Material and Methods

- Model species: 28 ♀ goats (ruminant) fed for 6 months
- 4 diet groups of increasing abrasiveness: lucerne (L), grass (G), grass/rice husks (GR), grace/rice husks/sand (GRS)
- CT scans at beginning and end of experiment to observe wear development over time
- Mesowear (tooth profile) & tooth volume analysis on skulls and 3D renderings

Results

Comparing diet groups showed no significant mesowear effect after 6 months. However, when assessing the difference in mesowear signal between the first and last CT (Fig. 1), groups GR and GRS showed higher wear than L and G. Surprisingly, GRS did not create the most wear. A feeding period longer than 6 months is therefore deemed necessary for clear development of a mesowear signal. During volume analysis, significant differences in crown loss appeared between L/G and GR/GRS. Furthermore, a significant, positive correlation between crown volume loss and root volume gain (Fig. 2) was noted; a surprising finding for adult animals. This growth could be attributed to cementum deposition, attenuating wear caused by abrasive diets.

Conclusions

- Mesowear develops slowly, it is probably more of a lifetime signal
- Surprisingly, no grit-effect for GRS. It could be washed off in the rumen
- Feedback mechanism counters crown wear by inducing root growth

References and additional information
Tooth wear in goats fed diets of different abrasiveness for half a year

Nicole L. Ackermans1, Daniela E. Winkler2,4, Ellen Schulz-Kornas3,4, Thomas M. Kaiser3, Dennis W. H. Müller3, Patrick R. Kircher4, Jürgen Hummel5, Marcus Clauss1, Jean-Michel Hatt1
1Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich. 2Institute for Geosciences, Johannes Gutenberg University Mainz. 3Max Planck-Witsman Center for Integrative Archaeology and Anthropology, Leipzig. 4Center of Natural History, University of Hamburg. 5Zoologischer Garten Halle. 6Division of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich. 7Department of Animal Sciences, Ruminant Nutrition, Georg-August University, Göttingen.

References

Funding

This project was funded by the Swiss National Science Foundation (Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung). The work of D.W.H.M. for this project was financed by a Candoc Forschungskredit by the Universität Zürich. D.E.W. was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme.